On symplectic mappings of contraction operators
نویسندگان
چکیده
منابع مشابه
EXTENSION OF FUZZY CONTRACTION MAPPINGS
In a fuzzy metric space (X;M; *), where * is a continuous t-norm,a locally fuzzy contraction mapping is de ned. It is proved that any locally fuzzy contraction mapping is a global fuzzy contractive. Also, if f satis es the locally fuzzy contractivity condition then it satis es the global fuzzy contrac-tivity condition.
متن کاملEndpoints of multi-valued cyclic contraction mappings
Endpoint results are presented for multi-valued cyclic contraction mappings on complete metric spaces (X, d). Our results extend previous results given by Nadler (1969), Daffer-Kaneko (1995), Harandi (2010), Moradi and Kojasteh (2012) and Karapinar (2011).
متن کاملToeplitz Operators on Symplectic Manifolds
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established. 0. Introduction Quant...
متن کاملOn best proximity points for multivalued cyclic $F$-contraction mappings
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
متن کاملextension of fuzzy contraction mappings
in a fuzzy metric space (x;m; *), where * is a continuous t-norm,a locally fuzzy contraction mapping is de ned. it is proved that any locally fuzzy contraction mapping is a global fuzzy contractive. also, if f satis es the locally fuzzy contractivity condition then it satis es the global fuzzy contrac-tivity condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1968
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-31-1-15-27